metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(isopropyltriphenylphosphonium) di-*µ*-iodido-bis[iodidocopper(I)]

Ehsan Jalilian^a* and Sven Lidin^b

^aDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, and ^bPolymer and Materials Chemistry, Lund University, 221 00 Lund, Sweden Correspondence e-mail: ehsan.jalilian@mmk.su.se

Received 15 March 2010; accepted 18 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.021; wR factor = 0.059; data-to-parameter ratio = 31.9.

The title compound, $(C_{21}H_{22}P)_2[Cu_2I_4]$, prepared from reaction between copper powder, iodine and isopropyl triphenylphosphonium iodide in hydroxyacetone (acetol), shows an already known Cu₂I₄²⁻ anion with a planar conformation [Cu-I range = 2.5108 (3)-2.5844 (3) Å and I-Cu-I range =110.821 (10)-125.401 (10)°].

Related literature

For structurally fully characterized units containing a planar $[Cu_2I_4]^{2-}$ ion included in the Cambridge Structural Database (CSD; Allen, 2002), see: Asplund et al. (1982); Asplund & Jagner (1984a); Hartl et al. (1985); Basu et al. (1987); Canty et al. (1987); Cunningham et al. (1990); Bhaduri et al. (1991); Pfitzner & Schmitz (1997); Allen et al. (1998); Su et al. (2002); Feng et al. (2006); Bowmaker et al. (2007); Cariati et al. (2007); Kia et al. (2007); Liu et al. (2007); Herres-Pawlis et al. (2008); Mishra et al. (2008). For those structures in the CSD containing a bent $[Cu_2I_4]^{2-}$ ion, see: Asplund & Jagner (1984b); Ramaprabhu et al. (1994); Hoyer & Hartl (1992). For the extinction correction see: Becker & Coppens (1974).

Experimental

Crystal data $(C_{21}H_{22}P)_{2}[Cu_{2}I_{4}]$ $M_r = 1245.4$

Monoclinic, $P2_1/n$ a = 11.5503 (1) Å

b = 12.2422 (1) Å c = 15.2619(1) Å $\beta = 94.91 \ (1)^{\circ}$ V = 2150.14 (3) Å³ Z = 2

Data collection

Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector Absorption correction: Gaussian (CrysAlis RED; Oxford

Refinement $R[F^2 > 2\sigma(F^2)] = 0.021$ 227 parameters $wR(F^2) = 0.059$ $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^-$ S = 0.85 $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$ 7235 reflections

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004); program(s) used to refine structure: JANA2000 (Petříček et al., 2000); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000.

Financial support from the Swedish Research Council is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2549).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, D. W., Mifflin, J. P. L. & Coles, S. (1998). Chem Commun. pp. 2115-2116.
- Asplund, M. & Jagner, S. (1984a). Acta. Chem. Scand Ser. A. 38, 297-301.
- Asplund, M. & Jagner, S. (1984b). Acta. Chem. Scand Ser. A. 38, 411-414. Asplund, M., Jagner, S. & Nilsson, M. (1982). Acta. Chem. Scand Ser. A. 36,
- 751-755.
- Basu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). Chem. Commun. pp. 1724-1725.
- Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.
- Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539-2543.
- Bowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem. 633, 1024–1030.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Canty, A. J., Engelhardt, L. M., Healy, P. C., Kidden, J. D., Minchin, N. J. &
- White, A. H. (1987). Aust. J. Chem. 40, 1881-1891. Cariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Masciocchi, N. & Sironi,
- A. (2007). Chem. Matter, 19, 3704-3711. Cunningham, D., Gallagher, J. F., Higgins, T., McArdle, P., McGinley, J. & Sheerin, D. (1990). Chem. Commun. pp. 959-961.
- Feng, H., Zhou, X. P., Wu, P., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027-4035.
- Hartl, H., Brudgam, I. & Mahdjour Hassan Abadi, F. (1985). Z. Naturforsch. Teil B, 40, 1032-1039.
- Herres-Pawlis, S., Haase, R., Akin, E., Florke, U. & Henkel, G. (2008). Z. Anorg. Allg. Chem. 634, 295-298.
- Hoyer, M. & Hartl, H. (1992). Z. Anorg. Allg. Chem. 612, 45-50.
- Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta. 360, 3369-3375.
- Liu, Y.-F., Chen, J.-Z. & Huang, C.-C. (2007). Acta Cryst. E63, m2957.
- Mishra, S., Jeanneau, E., Daniele, D. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814-816.

 $T_{\min} = 0.425, T_{\max} = 0.720$ 59726 measured reflections 7235 independent reflections 5970 reflections with $I > 3\sigma(I)$ $R_{\rm int} = 0.028$

Mo $K\alpha$ radiation

 $0.34 \times 0.24 \times 0.11 \text{ mm}$

Diffraction, 2008)

 $\mu = 3.96 \text{ mm}^{-1}$

T = 100 K

H-atom parameters constrained

Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.

- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.

- Inorg. Chim. Acta, 227, 153–157.
- Su, C. Y., Cai, Y. P., Chen, C. L., Lissner, F., Kang, B. S. & Kaim, W. (2002).
 Angew. Chem. Int. Ed. 41, 3371–3375.

Pfitzner, A. & Schmitz, D. (1997). Z. Anorg. Allg. Chem. 623, 1555–1560. Ramaprabhu, S., Ferretti, R., Lucken, E. A. C. & Bernardurelli, G. (1994).

supplementary materials

Acta Cryst. (2010). E66, m432-m433 [doi:10.1107/S1600536810010196]

Bis(isopropyltriphenylphosphonium) di-*µ*-iodido-bis[iodidocopper(I)]

E. Jalilian and S. Lidin

Comment

Copper halide complexes have been of great interested due to their wide structural variation. The copper atoms can be in trigonal or tetrahedral geometry and this is the main reason for so many structure variations.

A search in Cambridge Structural Database shows 20 different structures containing $[Cu_2I_4]^{2-}$ as the anion, the major difference between these are that different cations are employed in the structures. $[Cu_2I_4]^{-2}$ unit can be in two different forms, planar or bent.

For being able to crystallize $[Cu_2I_4]^{2-}$ unit the cations needs to be large and bulky such as $[N/P-R_4]^+$ or $[AsR_4]^+$ (where R= alkyl /phenyl). Hartl *et al.* (1985) and Pfitzner & Schmitz (1997) discuss the different modification of $[Cu_2I_4]^{2-}$ unit with tetra phenylphosphonium as the cation.

By reacting copper powder, iodine and isopropyltriphenylphosphonium iodide in hydoxyacetone under nitrogen atmosphere and reflux colorless parallelepiped crystals are formed. X-ray crystallography shows that the mentioned crystals contain the well known $[Cu_2I_4]^{2-}$ as the anion and isopropyltriphenylphosphonium as the cation.

The anion shows some variation in the Cu–I distance 2.5108 (3)–2.5844 (3) Å and large variation in I–Cu–I angle 110.821 (19)–125.401 (10)°. The counter ion is a typical isopropyltriphenylphosphonium with P–C range 1.7909 (17)–1.8242 (17) Å, C–C (in isopropyl chain) range 1.387 (3)–1.400 (2) Å and (in phenyl rings) 1.536 (2)–1.539 (2) Å, The angles are in range C–P–C 107.29 (7)–110.57 (8)° and (P/C–C–C 109.88 (11)–120.63 (16)°.

Experimental

Isopropyl triphenylphosphonium iodide (2.711 mmol), iodine (5.011 mmol) and copper powder (20.056 mmol) were mixed and heated under reflux in hydroxyacetone (50 ml) under a nitrogen atmosphere. After 3 hours the solution became pale yellow. The mixture was filtered while hot and solution was kept at 6°C. Well shaped parallelepiped crystals formed over the course of several days.

Refinement

The structures were solved by charge-flipping, giving the I, Cu, P and main part of the C positions. The remaining C positions were found using difference Fourier analysis. All non-hydrogen positions were refined using full matrix least squares. The hydrogen atoms were located by geometrical methods and were allowed to ride, with C–H = 1.00Å and $U_{eq} = 1.2U_{iso}(C)$.

Figures

Fig. 1. Molecular structure and atom-labelling scheme for the anion and cation respectively in (I). Non-H atoms are shown as 50% probability displacement ellipsoids.

Bis(isopropyltriphenylphosphonium) di-µ-iodido-bis[iodidocopper(I)]

$(C_{21}H_{22}P)_2[Cu_2I_4]$	F(000) = 1192
$M_r = 1245.4$	$D_{\rm x} = 1.923 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71069$ Å
Hall symbol: -P 2yn	Cell parameters from 35772 reflections
a = 11.5503 (1) Å	$\theta = 4.3 - 32.2^{\circ}$
b = 12.2422 (1) Å	$\mu = 3.96 \text{ mm}^{-1}$
c = 15.2619 (1) Å	T = 100 K
$\beta = 94.91 (1)^{\circ}$	Parallelepiped, colorless
V = 2150.14 (3) Å ³	$0.34\times0.24\times0.11~mm$
<i>Z</i> = 2	

Data collection

Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector	7235 independent reflections
Radiation source: Enhance (Mo) X-ray source	5970 reflections with $I > 3\sigma(I)$
graphite	$R_{\rm int} = 0.028$
Detector resolution: 16.5467 pixels mm ⁻¹	$\theta_{\text{max}} = 32.3^{\circ}, \ \theta_{\text{min}} = 4.3^{\circ}$
(i) scans	$h = -16 \rightarrow 16$
Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008)	$k = -18 \rightarrow 17$
$T_{\min} = 0.425, T_{\max} = 0.720$	<i>l</i> = −22→22
59726 measured reflections	

Refinement

Refinement on F^2	$[\sigma^2(I) + 0.0025I^2]$
$R[F^2 > 2\sigma(F^2)] = 0.021$	$(\Delta/\sigma)_{\rm max} = 0.048$
$wR(F^2) = 0.059$	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 0.85	$\Delta \rho_{\rm min} = -0.34 \ e \ {\rm \AA}^{-3}$
7235 reflections	Extinction correction: B-C (Becker & Coppens, 1974)
227 parameters	Extinction coefficient: 64 (
H-atom parameters constrained	

Weighting scheme based on measured s.u.'s $w = 1/$
$[\sigma^2(I) + 0.0025I^2]$
$(\Delta/\sigma)_{\rm max} = 0.048$
$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
Extinction coefficient: 64 (4)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.157523 (11)	0.779996 (10)	0.067564 (7)	0.01803 (4)
I2	0.088940 (10)	0.420511 (9)	0.109927 (7)	0.01722 (4)
Cu	0.05477 (2)	0.60384 (2)	0.027808 (15)	0.01978 (7)
Р	0.64953 (4)	0.37043 (4)	0.21738 (3)	0.00966 (10)
C1p1	0.74345 (15)	0.33415 (13)	0.31293 (10)	0.0109 (4)
C2p1	0.69514 (16)	0.31940 (15)	0.39296 (10)	0.0143 (4)
C3p1	0.76541 (17)	0.28472 (15)	0.46633 (11)	0.0173 (5)
C4p1	0.88223 (17)	0.26343 (15)	0.45940 (11)	0.0176 (5)
C5p1	0.93029 (17)	0.27634 (15)	0.37964 (12)	0.0167 (5)
C6p1	0.86142 (15)	0.31277 (14)	0.30603 (10)	0.0135 (4)
C1p2	0.54471 (14)	0.46880 (14)	0.24661 (10)	0.0112 (4)
C2p2	0.57038 (16)	0.53997 (14)	0.31737 (11)	0.0144 (4)
C3p2	0.49367 (16)	0.62306 (15)	0.33355 (11)	0.0170 (5)
C4p2	0.39280 (16)	0.63785 (15)	0.27840 (12)	0.0175 (5)
C5p2	0.36630 (16)	0.56700 (15)	0.20803 (12)	0.0160 (5)
C6p2	0.44136 (15)	0.48239 (14)	0.19229 (10)	0.0134 (4)
C1p3	0.57856 (14)	0.24771 (13)	0.17715 (9)	0.0109 (4)
C2p3	0.63395 (15)	0.18004 (14)	0.11953 (10)	0.0129 (4)
C3p3	0.58422 (16)	0.08039 (14)	0.09410 (11)	0.0158 (5)
C4p3	0.48000 (16)	0.04790 (15)	0.12623 (11)	0.0164 (5)
C5p3	0.42538 (16)	0.11456 (15)	0.18379 (11)	0.0163 (5)
C6p3	0.47469 (16)	0.21450 (14)	0.21023 (11)	0.0141 (4)
C1	0.79164 (16)	0.53620 (14)	0.16800 (11)	0.0153 (4)
C2	0.73307 (15)	0.43027 (13)	0.13327 (10)	0.0116 (4)
C3	0.65453 (16)	0.45208 (16)	0.04843 (11)	0.0163 (5)
H2p1	0.610619	0.333664	0.397495	0.0171*
H3p1	0.731677	0.275148	0.524039	0.0207*
H4p1	0.932341	0.238556	0.512322	0.0211*
H5p1	1.014278	0.259481	0.375066	0.0201*
H6p1	0.895932	0.323565	0.248756	0.0162*
H2p2	0.643991	0.530856	0.356176	0.0173*
H3p2	0.510937	0.672596	0.385113	0.0204*
H4p2	0.339048	0.6995	0.289234	0.021*
H5p2	0.293124	0.577268	0.168935	0.0192*
H6p2	0.421947	0.431003	0.142251	0.0161*
H2p3	0.708814	0.203352	0.096868	0.0154*
H3p3	0.623105	0.031934	0.052766	0.019*
H4p3	0.444416	-0.023818	0.107694	0.0197*
H5p3	0.350559	0.090824	0.206307	0.0196*
H6p3	0.436258	0.262044	0.252451	0.0169*
H11	0.845037	0.519682	0.221417	0.0184*
H12	0.837136	0.568642	0.121554	0.0184*
H13	0.730875	0.589258	0.183635	0.0184*
H31	0.620205	0.381651	0.025423	0.0196*
H32	0.590744	0.503285	0.061406	0.0196*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H33	0.701625	0.485451	0.003363	0.0196*
H2	0.794709	0.377409	0.118967	0.014*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01934 (7)	0.01958 (7)	0.01576 (6)	0.00147 (4)	0.00501 (4)	0.00177 (4)
12	0.01794 (7)	0.01351 (6)	0.02015 (6)	-0.00133 (4)	0.00141 (4)	0.00095 (4)
Cu	0.01934 (12)	0.02089 (12)	0.01968 (10)	0.00260 (9)	0.00502 (8)	0.00201 (8)
Р	0.00942 (19)	0.00998 (19)	0.00955 (15)	0.00068 (14)	0.00067 (13)	-0.00029 (13)
C1p1	0.0118 (7)	0.0095 (7)	0.0110 (6)	-0.0001 (6)	-0.0015 (5)	-0.0001 (5)
C2p1	0.0144 (8)	0.0142 (8)	0.0143 (7)	-0.0009 (6)	0.0012 (6)	0.0014 (6)
C3p1	0.0222 (9)	0.0170 (8)	0.0121 (7)	-0.0025 (7)	-0.0015 (6)	0.0016 (6)
C4p1	0.0215 (9)	0.0143 (8)	0.0155 (7)	-0.0017 (7)	-0.0070 (6)	0.0021 (6)
C5p1	0.0141 (8)	0.0133 (8)	0.0219 (8)	0.0006 (6)	-0.0032 (6)	0.0010 (6)
C6p1	0.0141 (8)	0.0111 (7)	0.0152 (7)	0.0001 (6)	0.0004 (6)	0.0003 (6)
C1p2	0.0101 (7)	0.0118 (7)	0.0116 (6)	0.0017 (6)	0.0009 (5)	-0.0011 (5)
C2p2	0.0140 (8)	0.0131 (8)	0.0159 (7)	0.0007 (6)	0.0003 (6)	-0.0036 (6)
C3p2	0.0173 (9)	0.0143 (8)	0.0197 (7)	0.0004 (7)	0.0025 (6)	-0.0063 (6)
C4p2	0.0142 (8)	0.0150 (8)	0.0234 (8)	0.0016 (7)	0.0024 (6)	-0.0038 (6)
C5p2	0.0118 (8)	0.0163 (8)	0.0197 (7)	0.0019 (6)	-0.0007 (6)	-0.0014 (6)
C6p2	0.0119 (8)	0.0138 (8)	0.0142 (6)	0.0006 (6)	0.0000 (5)	-0.0024 (6)
C1p3	0.0120 (8)	0.0101 (7)	0.0103 (6)	0.0018 (6)	0.0000 (5)	-0.0002 (5)
C2p3	0.0136 (8)	0.0123 (7)	0.0127 (6)	0.0013 (6)	0.0013 (5)	-0.0001 (5)
C3p3	0.0205 (9)	0.0126 (8)	0.0138 (7)	0.0035 (6)	-0.0017 (6)	-0.0025 (6)
C4p3	0.0191 (9)	0.0112 (8)	0.0180 (7)	-0.0006 (6)	-0.0042 (6)	0.0009 (6)
C5p3	0.0141 (8)	0.0163 (8)	0.0186 (7)	-0.0028 (7)	0.0017 (6)	0.0030 (6)
C6p3	0.0150 (8)	0.0141 (8)	0.0134 (7)	0.0010 (6)	0.0031 (6)	0.0003 (5)
C1	0.0153 (8)	0.0128 (8)	0.0180 (7)	-0.0013 (6)	0.0020 (6)	0.0016 (6)
C2	0.0116 (8)	0.0111 (7)	0.0124 (6)	0.0005 (6)	0.0021 (5)	0.0008 (5)
C3	0.0183 (9)	0.0190 (9)	0.0115 (6)	-0.0004 (7)	0.0002 (6)	0.0024 (6)

Geometric parameters (Å, °)

I1—Cu	2.5108 (3)	C4p2—H4p2	1.0000
I2—Cu	2.5844 (3)	C5p2—C6p2	1.385 (3)
P—C1p1	1.7972 (15)	C5p2—H5p2	1.0000
P—C1p2	1.7909 (17)	С6р2—Н6р2	1.0000
P—C1p3	1.7944 (17)	C1p3—C2p3	1.402 (2)
Р—С2	1.8242 (17)	C1p3—C6p3	1.401 (3)
C1p1—C2p1	1.397 (2)	C2p3—C3p3	1.390 (2)
C1p1—C6p1	1.400 (2)	С2р3—Н2р3	1.0000
C2p1—C3p1	1.392 (2)	C3p3—C4p3	1.396 (3)
C2p1—H2p1	1.0000	С3р3—Н3р3	1.0000
C3p1—C4p1	1.387 (3)	C4p3—C5p3	1.389 (3)
C3p1—H3p1	1.0000	C4p3—H4p3	1.0000
C4p1—C5p1	1.390 (3)	C5p3—C6p3	1.395 (3)
C4p1—H4p1	1.0000	С5р3—Н5р3	1.0000
C5p1—C6p1	1.393 (2)	С6р3—Н6р3	1.0000

C5p1—H5p1	1.0000	C1—C2	1.536 (2)
C6p1—H6p1	1.0000	C1—H11	1.0000
C1p2—C2p2	1.399 (2)	C1—H12	1.0000
C1p2—C6p2	1.404 (2)	С1—Н13	1.0000
C2p2—C3p2	1.385 (3)	C2—C3	1.539 (2)
С2р2—Н2р2	1.0000	С2—Н2	1.0000
C3p2—C4p2	1.390 (3)	С3—Н31	1.0000
C3p2—H3p2	1.0000	С3—Н32	1.0000
C4p2—C5p2	1.394 (3)	С3—Н33	1.0000
Cu—I2—Cu ⁱ	69.179 (8)	C4p2—C5p2—H5p2	120.01
Cu ⁱ —I2—Cu	69.179 (8)	С6р2—С5р2—Н5р2	120.01
I1—Cu—I2	125.401 (10)	C1p2—C6p2—C5p2	119.97 (15)
I2 ⁱ —Cu—I2	110.821 (10)	С1р2—С6р2—Н6р2	120.02
C1p1—P—C1p2	109.76 (7)	С5р2—С6р2—Н6р2	120.01
C1p1—P—C1p3	107.29 (7)	P—C1p3—C2p3	119.33 (13)
C1p1—P—C2	110.57 (8)	Р—С1р3—С6р3	119.99 (12)
C1p2—P—C1p3	110.45 (8)	C2p3—C1p3—C6p3	120.35 (15)
C1p2—P—C2	108.34 (8)	C1p3—C2p3—C3p3	119.62 (16)
C1p3—P—C2	110.43 (7)	C1p3—C2p3—H2p3	120.19
P-C1p1-C2p1	118.87 (13)	С3р3—С2р3—Н2р3	120.19
P-C1p1-C6p1	120.59 (12)	C2p3—C3p3—C4p3	120.02 (16)
C2p1—C1p1—C6p1	120.36 (14)	С2р3—С3р3—Н3р3	119.99
C1p1—C2p1—C3p1	119.58 (17)	С4р3—С3р3—Н3р3	119.99
C1p1—C2p1—H2p1	120.21	C3p3—C4p3—C5p3	120.44 (17)
C3p1—C2p1—H2p1	120.21	С3р3—С4р3—Н4р3	119.78
C2p1—C3p1—C4p1	120.01 (16)	C5p3—C4p3—H4p3	119.78
C2p1—C3p1—H3p1	120.00	C4p3—C5p3—C6p3	120.12 (17)
C4p1—C3p1—H3p1	120.00	С4р3—С5р3—Н5р3	119.94
C3p1—C4p1—C5p1	120.63 (16)	С6р3—С5р3—Н5р3	119.94
C3p1—C4p1—H4p1	119.69	C1p3—C6p3—C5p3	119.44 (16)
C5p1—C4p1—H4p1	119.69	С1р3—С6р3—Н6р3	120.28
C4p1—C5p1—C6p1	119.97 (17)	С5р3—С6р3—Н6р3	120.28
C4p1—C5p1—H5p1	120.02	C2-C1-H11	109.47
C6p1—C5p1—H5p1	120.02	C2-C1-H12	109.47
C1p1—C6p1—C5p1	119.44 (16)	C2-C1-H13	109.47
C1p1—C6p1—H6p1	120.28	H11—C1—H12	109.47
C5p1—C6p1—H6p1	120.28	H11—C1—H13	109.47
P-C1p2-C2p2	120.52 (12)	H12—C1—H13	109.47
PC1p2C6p2	119.43 (12)	P	109.88 (11)
C2p2—C1p2—C6p2	119.68 (16)	Р—С2—С3	110.64 (12)
C1p2—C2p2—C3p2	119.89 (15)	Р—С2—Н2	108.84
C1p2—C2p2—H2p2	120.06	C1—C2—C3	110.75 (14)
C3p2—C2p2—H2p2	120.06	C1—C2—H2	108.72
C2p2—C3p2—C4p2	120.25 (16)	С3—С2—Н2	107.94
C2p2—C3p2—H3p2	119.88	С2—С3—Н31	109.47
C4p2—C3p2—H3p2	119.88	С2—С3—Н32	109.47
C3p2—C4p2—C5p2	120.20 (17)	С2—С3—Н33	109.47
C3p2—C4p2—H4p2	119.90	H31—C3—H32	109.47

supplementary materials

C5p2—C4p2—H4p2	119.90	H31—C3—H33	109.47
C4p2—C5p2—C6p2	119.97 (16)	Н32—С3—Н33	109.47
Symmetry codes: (i) $-x$, $-y+1$, $-z$.			

Fig. 1